Rhodamin B Degradation Using Fe-Alginate Gel Beads under UV Light Exposure

Authors

  • Roy Andreas Universitas Jenderal Soedirman, Indonesia
  • Tien Setyaningtyas Universitas Jenderal Soedirman, Indonesia
  • Kapti Riyani Universitas Jenderal Soedirman, Indonesia

Keywords:

Alginate, Heterogeneous fenton, Reusable, Rhodamine B

Abstract

Heterogeneous Fenton can solve the problem in classic Fenton which is a homogeneous catalyst. Some of the problems with classic Fenton contained sludge production, lost catalysts, and no reuse. This study focuses on the application of Fe-alginate gel beads in the photo-Fenton system using UV light to degrade the dye rhodamine B. After the synthesis step of Fe-alginate gel beads, beads are used to degrade rhodamine B. In addition, the rate of kinetics, mechanism tests, and the reusable tests of Fe-alginate gel beads was also observed. The results confirmed that the degradation value of rhodamine B is 98.8% with the photocatalytic activity is 88.8%. This heterogenous Fenton system fits in first order and •OH is the main radical species to degrade rhodamine B. The reuseable Fe-alginate gel beads were taken out five times, and showed a degradation value of more than 90%. Therefore, it can confirm that the usage of Fe-alginate gel beads as a heterogeneous Fenton may be applied to industrial wastewater processing containing dyes or organic pollutants because this photo-Fenton system is low cost and also be able on visible light.

Downloads

Download data is not yet available.

References

Ahmadi, S., Outokesh, M., Hosseinpour, M. & Mousavand, T. (2011). A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads, Particuology, 9(5), 480-485.

Hammouda, S., Adhoum, N., & Monser, L. (2016). Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads, Journal of Hazardous Materials, 301, 350-361.

Isik, Z., Bilici, Z., Adiguzel, S., Yatmaz, H., & Dizge, N. (2019). Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage, Environmental Technology & Innovation, 14, 100358.

Kanakaraju, D., Ravichandar, S., & Lim, Y. (2016). Combined effects of adsorption and photocatalysis by hybridTiO2/ZnO-calcium alginate beads for the removal of copper, Journal of Environmental Sciences, 55, 214-223.

Konstantinou I. K., & Albanis T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution: kinetic and mechanistic investigations, Applied Catalysis B: Environmental, 49(1), 1–14.

Liang, L., Cheng, L., Zhang, Y., Wang, Q., Wu, Q., Xue, Y., & Meng, X. (2020). Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron, Rcs Advances. 10(48), 28509-28515.

Liu, S., Liu, L., Demissie, H., An, G., & Wang, D. (2021). Design and application of metal-organic frameworks and derivates as heterogeneous Fenton-like catalystsfor organic wastewater treatment: A review, Environment International, 146, 106273.

López-Varquez, A., Santamaria, M., & Gomez, C. (2010). Congo Red Photocatalytic Decolourization Usinng Modified Titanium, World Academy of Science. Engineering and Technology.

Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.

Purnamasari, D. S., & Saebani. (2013) Pengaruh Rhodamin B Peroral Dosis Bertingkat Selama 12 Minggu terhadap Gambaran Histomorfometri Limpa, Thesis, Diponegoro University.

Rehman S., Ullah R., Butt A. M., & Gohar, N. D. (2009) Strategies of making TiO2 and ZnO visible lightactive. Journal Hazardous Materials, 170(2–3), 560–569.

Rosales, E., Iglesias, O., Pazos, M., & Sanroman, M. (2012) Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads, Journal of Hazardous Materials, 213, 369-377.

Shim, J., Kumar, M., Goswami, R., Mazumder, P., Oh, B-T., & Shea, P. (2018) Removal of p-cresol and tylosinfrom water usinganovel composite ofalginate, recycled MnO2 and activated carbon, Journal of Hazardous Materials, 364, 419-428.

Yang, C., Wang, M., Haider, H., Yang, J., Sun, J., Chen, Y, & Suo, Z. (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations, ACS Applied Materials & Interfaces, 5(21), 10418-10422.

Yi, Y., Tu, G., Eric-Tsang, P., & Fang, Z. (2020) Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar, Chemical Engineering Journal, 380, 122518.

Zhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019) Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A review, Applied Catalysis B: Environmental, 255, 117739.

Downloads

Published

01-02-2024

How to Cite

Andreas, R., Setyaningtyas, T., & Riyani, K. . (2024). Rhodamin B Degradation Using Fe-Alginate Gel Beads under UV Light Exposure. Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 10(1), 1–8. Retrieved from https://jurnal.ustjogja.ac.id/index.php/sciencetech/article/view/16057

Citation Check