Effect of Dry Ice Gel PCM on Wall Freezer Temperature Variance

Authors

  • Boni Sena Universitas Singaperbangsa Karawang, Indonesia https://orcid.org/0000-0001-5231-777X
  • Bobie Suhendra Universitas Singaperbangsa Karawang, Indonesia
  • Nadia Amanah Universitas Singaperbangsa Karawang, Indonesia
  • Reza Setiawan Universitas Singaperbangsa Karawang, Indonesia
  • Muhammad Lukman Baihaqi Alfakihuddin Sampoerna University, Indonesia

DOI:

https://doi.org/10.30738/st.vol10.no1.a16206

Keywords:

ADAM 6018 , Dry ice gel, Freezers, Phase change material, Thermocouple

Abstract

The increasing population growth in cities will cause environmental detriments such as global warming and ozone depletion. The electricity need will increase in the future due to the higher temperature in the cities, leading to the higher usage of cooling equipment such as freezers. The current study proposed a method to improve the freezer's energy efficiency by using phase change material of dry ice gel. Most of previous studies only focused on the impact of position of phase change materials on the temperature of wall freezer while no previous studies consider the detailed methodology of measurement and the impact of phase change material based on dry ice gel to the variance of wall temperature. The sensor thermocouple type T and data logger ADAM 6018+ were used to measure the wall temperature of the freezer. The results showed that the sensor thermocouple was verified to the calibrated thermometer with R2 = 0.99. The installation of phase change material based on dry ice gel on the wall freezer could maintain the temperature around 1-2oC while the freezer was turned off for 4, 6, and 8 hours. The efficiency of freezer could be increased from 10% to 30% due to using dry ice gel phase change material. The future study should investigate the various types of phase change materials and the new combination of phase change materials.

Downloads

Download data is not yet available.

References

Abdolmaleki, L., Sadrameli, S. M., & Pirvaram, A. (2020). Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers. Renewable Energy, 145, 233–241. https://doi.org/https://doi.org/10.1016/j.renene.2019.06.035.

Abram, N. J., McGregor, H. V, Tierney, J. E., Evans, M. N., McKay, N. P., Kaufman, D. S., Thirumalai, K., Martrat, B., Goosse, H., Phipps, S. J., Steig, E. J., Kilbourne, K. H., Saenger, C. P., Zinke, J., Leduc, G., Addison, J. A., Mortyn, P. G., Seidenkrantz, M.-S., Sicre, M.-A., … Consortium, the P. 2k. (2016). Early onset of industrial-era warming across the oceans and continents. Nature, 536(7617), 411–418. https://doi.org/10.1038/nature19082.

Ascione, F., Bianco, N., De Masi, R. F., Mastellone, M., & Peter Vanoli, G. (2019). Phase change materials for reducing cooling energy demand and improving indoor comfort: A step-by-step retrofit of a Mediterranean educational building. Energies, 12(19). https://doi.org/10.3390/en12193661.

Biglia, A., Gemmell, A. J., Foster, H. J., & Evans, J. A. (2020). Energy performance of domestic cold appliances in laboratory and home environments. Energy, 204(May). https://doi.org/10.1016/j.energy.2020.117932.

Defalco, M. (2017). Phase Change Material as Energy Material for Cold Storage and its integration in Civil Air Conditioning Systems: material properties and on field application. 102(Icmmse), 115–120. https://doi.org/10.2991/icmmse-17.2017.19.

Du, K., Calautit, J., Wang, Z., Wu, Y., & Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy, 220, 242–273.

Ghodrati, A., Zahedi, R., & Ahmadi, A. (2022). Analysis of cold thermal energy storage using phase change materials in freezers. Journal of Energy Storage, 51(November 2021), 104433. https://doi.org/10.1016/j.est.2022.104433.

Gil, A., Oró, E., Miró, L., Peiró, G., Ruiz, Á., Salmerón, J. M., & Cabeza, L. F. (2014). Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. International Journal of Refrigeration, 39, 95–103.

Gin, B., Farid, M. M., & Bansal, P. (2011). Modeling of phase change material implemented into cold storage application. HVAC and R Research, 17(3), 257–267. https://doi.org/10.1080/10789669.2011.572222.

IESR. (2021). Indonesia Energy Transition Outlook 2022. Iesr, 1–93.

Imessad, K., Derradji, L., Messaoudene, N. A., Mokhtari, F., Chenak, A., & Kharchi, R. (2014). Impact of passive cooling techniques on energy demand for residential buildings in a Mediterranean climate. Renewable Energy, 71, 589–597. https://doi.org/https://doi.org/10.1016/j.renene.2014.06.005.

IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. In Special Report on Global Warming of 1.5°C. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157940.

Kubota, T., Chyee, D. T. H., & Ahmad, S. (2009). The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia. Energy and Buildings, 41(8), 829–839. https://doi.org/https://doi.org/10.1016/j.enbuild.2009.03.008.

Ling, Z., Cao, J., Zhang, W., Zhang, Z., Fang, X., & Gao, X. (2018). Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Applied Energy, 228, 777–788. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.06.143.

Lu, W., Liu, G., Xing, X., & Wang, H. (2019). Investigation on ternary salt-water solutions as phase change materials for cold storage. Energy Procedia, 158(2018), 5020–5025. https://doi.org/10.1016/j.egypro.2019.01.662.

Marques, A. C., Davies, G. F., Maidment, G. G., Evans, J. A., & Wood, I. D. (2014). Novel design and performance enhancement of domestic refrigerators with thermal storage. Applied Thermal Engineering, 63(2), 511–519. https://doi.org/10.1016/j.applthermaleng.2013.11.043.

McNeil, M. A., Karali, N., & Letschert, V. (2019). Forecasting Indonesia’s electricity load through 2030 and peak demand reductions from appliance and lighting efficiency. Energy for Sustainable Development, 49, 65–77. https://doi.org/10.1016/j.esd.2019.01.001.

National Energy Council. (2019). Indonesia energy outlook 2019 (S. Abdurrahman, M. Pertiwi, & Walujanto (eds.)). National Energy Council. https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf.

Omara, A. A. M., & Mohammedali, A. A. M. (2020). Thermal management and performance enhancement of domestic refrigerators and freezers via phase change materials: A review. Innovative Food Science and Emerging Technologies, 66(October), 102522. https://doi.org/10.1016/j.ifset.2020.102522.

Oró, E., Gil, A., Miró, L., Peiró, G., Álvarez, S., & Cabeza, L. F. (2012). Thermal energy storage implementation using phase change materials for solar cooling and refrigeration applications. Energy Procedia, 30, 947–956. https://doi.org/10.1016/j.egypro.2012.11.107.

Sena, B., Zaki, S. A., Rijal, H. B., Ardila-Rey, J. A., Yusoff, N. M., Yakub, F., Ridwan, M. K., & Muhammad-Sukki, F. (2021). Determinant factors of electricity consumption for a Malaysian household based on a field survey. Sustainability (Switzerland), 13(2). https://doi.org/10.3390/su13020818.

Taufiqurrahman. (2016). Performance Analysis of Organic Phase Change Material As Alternative Refrigeration of Cold Storage. Institut Teknologi Sepuluh November.

Tewari, M., Salamanca, F., Martilli, A., Treinish, L., & Mahalov, A. (2017). Impacts of projected urban expansion and global warming on cooling energy demand over a semiarid region. Atmospheric Science Letters, 18(11), 419–426. https://doi.org/10.1002/asl.784.

Tuck, N.W; Zaki, S. A. (2022). Passive cooling retrofit for terrace house in Malaysia. UTM Press.

United Nations. (2022). World Population Prospects 2022. https://population.un.org/wpp/.

Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3–28). Elsevier.

Yusufoglu, Y., Apaydin, T., Yilmaz, S., & Paksoy, H. O. (2015). Improving performance of household refrigerators by incorporating phase change materials. International Journal of Refrigeration, 57, 173–185. https://doi.org/10.1016/j.ijrefrig.2015.04.020.

Downloads

Published

23-02-2024

How to Cite

Sena, B., Suhendra, B., Amanah, N., Setiawan, R., & Baihaqi Alfakihuddin, M. L. (2024). Effect of Dry Ice Gel PCM on Wall Freezer Temperature Variance. Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 10(1), 21–35. https://doi.org/10.30738/st.vol10.no1.a16206

Citation Check