Analisis tegangan, deformasi, dan retak pada gas turbine blade dengan metode elemen hingga

Authors

  • Bella Cornelia Tjiptady Universitas Islam Raden Rahmat
  • Mojibur Rohman Universitas Islam Raden Rahmat Malang
  • Dwi Agus Sudjimat Universitas Negeri Malang
  • Dianna Ratnawati Universitas Sarjanawiyata Tamansiswa

DOI:

https://doi.org/10.30738/jtv.v8i2.8425

Keywords:

Analisis, Tegangan, Deformasi, Gas Turbine Blade, Metode Elemen Hingga

Abstract

Kerusakan gas turbine blade terjadi karena beberapa kondisi yaitu tekanan yang tinggi akibat beroperasi pada temperatur serta kecepatan yang tinggi, kekuatan material (melting point), dan gaya aerodinamis yang melewati sudu turbin. Oleh karena itu diperlukan material dengan standar beban yang mampu digunakan pada temperatur tinggi. Kemampuan material tersebut terdapat pada superalloy. Tujuan penelitian ini yaitu untuk menguji kekuatan material gas turbine blade superalloy IN738LC menggunakan elemen hingga dengan bantuan software ANSYS versi 18.1. Analisis tersebut bertujuan untuk mengetahui tegangan, deformasi, dan uji retakan. Hasil simulasi dengan gaya 10N, 15N, dan 25N yaitu maximum equivalent stress sebesar 166.47 MPa, 166.46 MPa, dan 166.45 MPa. Nilai maximum principal stress tertinggi sebesar 171.96 MPa, 171.93 MPa, 171,88 MPa. Nilai maximum shear stress sebesar 86.084 MPa, 86.072 MPa, dan 86.049 MPa. Total deformation sebesar 9.7081x10-5 mm, 9.7073x10-5 mm, dan 9.7057x10-5 mm. Nilai maxsimum J-Integral sebesar 6,9361.10-7 mJ/mm2 dan 3157.10-7  mJ/mm2. SIFS (K1) maxsimum sebesar 0.29653 MPa.mm 0.5 dan 19.196 MPa.mm0.5. Kesimpulan penelitian ini menunjukkan bahwa hasil analisis tegangan dan perubahan bentuk menunjukkan bahwa gas turbine blade tidak gagal karena cacat material namun karena adanya korosi. Alasan utama kegagalan dimulai dengan mudah karena lubang-lubang korosi dan kelelahan pada sudu turbin gas.

References

Basuki, B., Yoto., Suyetno A., & Tjiptady, B. C. 2020. Management Model of Manufacturing Workshop/Laboratory of Vocational Education in the Industry 4.0. 4th International Conference on Vocational Education and Training (ICOVET), Malang, Indonesia, 2020, pp. 127-130, doi: 10.1109/ICOVET50258.2020.9230188.

Kaufman, C., Perlman, R., & Speciner, M. (1995). Network security: Private communication in a public world. Englewood Cliffs, NJ: Prentice Hall

de Lange, H. C., Ouwerkerk, H., Schot, J., & Abdelaal, H. A. N. (2020). Proof of concept of the Rankine Compression Gas Turbine (RCG) for a rapid peak-shaving response in industrial application. Applied Thermal Engineering, 173, 115251. https://doi.org/10.1016/j.applthermaleng.2020.115251

Donachie, M. J., & Donachie, S. J. (2002). Superalloys: A Technical Guide. ASM International. https://doi.org/10.31399/asm.tb.stg2.9781627082679

Elbagouri, N. (2016). Ni Based Superalloy: Casting Technology, Metallurgy, Development, Properties And Applications. International Journal of Engineering Sciences & Research Technology.

Han, J.-C. (2004). Enhanced Internal Cooling of Turbine Blades and Vanes. 34.

Majdi Yazdi, M. R., Ommi, F., Ehyaei, M. A., & Rosen, M. A. (2020). Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. Energy Conversion and Management, 216, 112944. https://doi.org/10.1016/j.enconman.2020.112944

Martini, P., Schulz, A., Whitney, C. F., & Lutum, E. (2003). Experimental and numerical investigation of trailing edge film cooling downstream of a slot with internal rib arrays. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(4), 393–401. https://doi.org/10.1243/095765003322315450

Mazur, Z., Luna-Ramírez, A., Juárez-Islas, J. A., & Campos-Amezcua, A. (2005). Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Engineering Failure Analysis, 12(3), 474–486. https://doi.org/10.1016/j.engfailanal.2004.10.002

Shamsuddin, K. A., Tajuddin, M. S., Amzari, M. M., Aris, M. M., & Zahelem, M. N. (2014). ï€ Stress Distribution Analysis of Rear Axle Housing by using Finite Elements Analysis. 10.

Tarchi, L., Facchini, B., & Zecchi, S. (2008). Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement and Elliptic Pin Fin. International Journal of Rotating Machinery, 2008, 1–10. https://doi.org/10.1155/2008/109120

Tjiptady, B. C., Yoto., & Tuwoso. (2019). Improving the Quality of Vocational Education in the 4.0 Industrial Revolution by using the Teaching Factory Approach. Internasional Journal of Innovation, Creativity and Change. doi: https://www.ijicc.net/images/vol8iss1/8104_Tjiptady_2019_E_R.pdf.

Published

2020-12-31

Issue

Section

Artikel