Analisis tegangan, deformasi, dan retak pada gas turbine blade dengan metode elemen hingga
DOI:
https://doi.org/10.30738/jtv.v8i2.8425Keywords:
Analisis, Tegangan, Deformasi, Gas Turbine Blade, Metode Elemen HinggaAbstract
Kerusakan gas turbine blade terjadi karena beberapa kondisi yaitu tekanan yang tinggi akibat beroperasi pada temperatur serta kecepatan yang tinggi, kekuatan material (melting point), dan gaya aerodinamis yang melewati sudu turbin. Oleh karena itu diperlukan material dengan standar beban yang mampu digunakan pada temperatur tinggi. Kemampuan material tersebut terdapat pada superalloy. Tujuan penelitian ini yaitu untuk menguji kekuatan material gas turbine blade superalloy IN738LC menggunakan elemen hingga dengan bantuan software ANSYS versi 18.1. Analisis tersebut bertujuan untuk mengetahui tegangan, deformasi, dan uji retakan. Hasil simulasi dengan gaya 10N, 15N, dan 25N yaitu maximum equivalent stress sebesar 166.47 MPa, 166.46 MPa, dan 166.45 MPa. Nilai maximum principal stress tertinggi sebesar 171.96 MPa, 171.93 MPa, 171,88 MPa. Nilai maximum shear stress sebesar 86.084 MPa, 86.072 MPa, dan 86.049 MPa. Total deformation sebesar 9.7081x10-5 mm, 9.7073x10-5 mm, dan 9.7057x10-5 mm. Nilai maxsimum J-Integral sebesar 6,9361.10-7 mJ/mm2 dan 3157.10-7Â mJ/mm2. SIFS (K1) maxsimum sebesar 0.29653 MPa.mm 0.5 dan 19.196 MPa.mm0.5. Kesimpulan penelitian ini menunjukkan bahwa hasil analisis tegangan dan perubahan bentuk menunjukkan bahwa gas turbine blade tidak gagal karena cacat material namun karena adanya korosi. Alasan utama kegagalan dimulai dengan mudah karena lubang-lubang korosi dan kelelahan pada sudu turbin gas.
References
Basuki, B., Yoto., Suyetno A., & Tjiptady, B. C. 2020. Management Model of Manufacturing Workshop/Laboratory of Vocational Education in the Industry 4.0. 4th International Conference on Vocational Education and Training (ICOVET), Malang, Indonesia, 2020, pp. 127-130, doi: 10.1109/ICOVET50258.2020.9230188.
Kaufman, C., Perlman, R., & Speciner, M. (1995). Network security: Private communication in a public world. Englewood Cliffs, NJ: Prentice Hall
de Lange, H. C., Ouwerkerk, H., Schot, J., & Abdelaal, H. A. N. (2020). Proof of concept of the Rankine Compression Gas Turbine (RCG) for a rapid peak-shaving response in industrial application. Applied Thermal Engineering, 173, 115251. https://doi.org/10.1016/j.applthermaleng.2020.115251
Donachie, M. J., & Donachie, S. J. (2002). Superalloys: A Technical Guide. ASM International. https://doi.org/10.31399/asm.tb.stg2.9781627082679
Elbagouri, N. (2016). Ni Based Superalloy: Casting Technology, Metallurgy, Development, Properties And Applications. International Journal of Engineering Sciences & Research Technology.
Han, J.-C. (2004). Enhanced Internal Cooling of Turbine Blades and Vanes. 34.
Majdi Yazdi, M. R., Ommi, F., Ehyaei, M. A., & Rosen, M. A. (2020). Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. Energy Conversion and Management, 216, 112944. https://doi.org/10.1016/j.enconman.2020.112944
Martini, P., Schulz, A., Whitney, C. F., & Lutum, E. (2003). Experimental and numerical investigation of trailing edge film cooling downstream of a slot with internal rib arrays. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(4), 393–401. https://doi.org/10.1243/095765003322315450
Mazur, Z., Luna-RamÃrez, A., Juárez-Islas, J. A., & Campos-Amezcua, A. (2005). Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Engineering Failure Analysis, 12(3), 474–486. https://doi.org/10.1016/j.engfailanal.2004.10.002
Shamsuddin, K. A., Tajuddin, M. S., Amzari, M. M., Aris, M. M., & Zahelem, M. N. (2014). ï€ Stress Distribution Analysis of Rear Axle Housing by using Finite Elements Analysis. 10.
Tarchi, L., Facchini, B., & Zecchi, S. (2008). Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement and Elliptic Pin Fin. International Journal of Rotating Machinery, 2008, 1–10. https://doi.org/10.1155/2008/109120
Tjiptady, B. C., Yoto., & Tuwoso. (2019). Improving the Quality of Vocational Education in the 4.0 Industrial Revolution by using the Teaching Factory Approach. Internasional Journal of Innovation, Creativity and Change. doi: https://www.ijicc.net/images/vol8iss1/8104_Tjiptady_2019_E_R.pdf.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.