Exploring group concepts in abstract algebra through ChatGPT: An innovative approach to mathematical teaching and learning

Fadhili Mustafa Mrope
Department of Mathematics and Statistics, Sokone University of Agriculture, P.O.BOX 3038, Morogoro, Tanzania
Corresponding Author. Email: fadhili.mrope@sua.ac.tz

Received: 22 March 2024; Revised: 22 May 2024; Accepted: 9 June 2024

Abstract: Traditional methods often struggle to engage students and effectively communicate the intricacies of abstract algebra. This study aims to explore the future of mathematics teaching, with a focus on integrating group theory concepts into Abstract Algebra using ChatGPT, an advanced language processing AI. Chat transcripts edited with ChatGPT were analyzed to gain insights into the evolving landscape of mathematics education, specifically concerning group theory. Group theory is a fundamental branch of Abstract Algebra poised to shape the future of mathematics instruction. ChatGPT facilitates interactive discussions and problem-solving tasks related to group operations, properties, and theorems, offering personalized explanations and guidance tailored to individual student needs. The study highlights the potential of AI-driven platforms like ChatGPT to revolutionize mathematics education by providing dynamic and engaging learning experiences centered around group theory. Furthermore, the study emphasizes the importance of incorporating group theory into mathematics curricula to foster critical thinking, problem-solving skills, and interdisciplinary connections. Educators are urged to leverage innovative tools like ChatGPT alongside traditional pedagogical approaches to ensure effective teaching and learning. Through thoughtful implementation and ongoing professional development, educators can harness AI's power to create inclusive, equitable, and enriching learning environments, empowering students in abstract mathematical reasoning and analysis.

Keywords: Abstract Algebra, Artificial intelligence, ChatGPT, Group theory

INTRODUCTION

Abstract algebra is the subject area which mathematically formalizes algebraic structures, such as groups, rings, vector spaces, fields and lattices (Admin, 2023). It is a cornerstone of modern mathematics which are fundamental to numerous branches of mathematics and have wide-ranging applications in science and engineering (Hoffman, 2017). Among these structures, group theory stands out as a central area of study, offering insights into symmetry, transformations, and abstract patterns (Dubinsky et al., 1994). Groups, in particular, serve as the backbone of many mathematical concepts and theories, providing a framework for understanding fundamental properties and relationships between mathematical objects (Beachy & Blair, 2019). Group theory originated from investigations into the properties of permutations and symmetries in the 19th century, evolving into a rich and diverse field with applications across various disciplines such as chemistry, physics and computer science (Moore, 2020).

One of the key concepts in group theory is the notion of a group, which consists of a set of elements and an operation that satisfies certain properties (Stiefel & Fässler, 2012). Learning
about groups typically begins with exploring basic properties such as closure, associativity, identity, and inverses, forming the foundation for more advanced group concepts (Dubinsky et al., 1994). Furthermore, students encounter various examples of groups in their studies, such as permutation groups, matrix groups, and cyclic groups, each with its own unique properties and characteristics (Robinson, 2012). Studying these examples aids students in gaining a deeper knowledge regarding the properties and representations of group theory and its applications (Veith et al., 2022).

Moreover, group theory has profound implications beyond pure mathematics, with applications in cryptography, quantum mechanics, and computer science (Wang & Xu, 2023). For example, group theory plays a crucial role in cryptography algorithms, where the security of cryptographic systems relies on the properties of certain mathematical groups (Wang & Xu, 2023). In quantum mechanics, symmetry groups provide a powerful framework for describing the behaviour of particles and the fundamental forces of nature (Woit et al., 2017). Additionally, group theory is integral to the study of symmetry in computer graphics, where algorithms for rendering and modelling complex shapes rely on group-theoretic principles (Sophokleous et al., 2021).

Veith et al. (2022) pointed out that the study of groups in abstract algebra not only enriches our understanding of mathematical structures but also has profound implications for various fields of science and engineering. Their research highlights how group theory serves as a cornerstone in modeling symmetries and transformations, essential in fields such as quantum mechanics and cryptography. Additionally, they emphasize the role of group theory in elucidating complex phenomena, from particle physics to crystallography. This assertion is echoed by Li and Zaki (2024), who further illustrate how group theory, coupled with augmented reality and artificial intelligence, opens avenues for innovative applications in mathematics education and computational modeling across scientific disciplines.

In mathematics, undergraduate students are expected first to learn about groups, rings, vector spaces and lattices through abstract axiomatic definitions and results, to eventually investigate advanced, often less abstract, mathematical theories through those acquired basic theories. Mastering abstract axiomatic definition and results of an algebraic structure are often difficult for students. How to help these students to learn their content and to make learning active is a challenging issue (Al Shloul et al., 2024). The traditional approach to learning about groups in abstract algebra often involves a combination of lectures, textbook readings, and problem-solving sessions. It is important to acknowledge that the effectiveness of these methods can vary among students, and they may not fully engage all learners or cater to diverse learning styles (Cardino Jr & Cruz, 2020; Abdullah et al., 2024; Akintayo et al., 2024; Eden et al., 2024). Thus, technology-enhanced teaching and learning process carries a paramount importance in this aspect.

A substantial body of literature exists on the effectiveness of technology-enhanced learning environments in mathematics education (Fowler et al., 2022; Young, 2017; Wong et al., 2024; Addan Gonçalves et al., 2024; Jiang et al., 2024; Hasumi & Chiu, 2024; Hashem et al., 2024; Hamadi & El-Den, 2024). Studies have explored the use of various technological tools, including computer algebra systems, interactive simulations, and online platforms, to facilitate the teaching and learning of abstract algebra concepts (Villa-Ochoa & Suárez-Téllez, 2021). For instance, research by Villa-Ochoa and Suárez-Téllez (2021) focused on identifying the contributions of technologies in the development of mathematical processes such as mathematical modeling and reasoning and in the learning of geometry, algebra, and calculus. Within each topic, they identify relevant research and provide feedback on their contributions where they demonstrated that the efficacy of computer algebra systems in promoting conceptual understanding and problem-solving skills in abstract algebra courses. Similarly, studies by Lamb, Annetta, Firestone and Etopio (2018) using studies published between 2015 and 2020 and meta-analytic techniques (including moderator analyses) to examine the effectiveness of DGBL interventions compared to traditional instruction methods where the
results from random-effects models revealed a significant medium effect for overall learning ($g = .54$) and cognitive learning outcomes ($g = .67$). Also found were a small effect for affective-motivational learning outcomes ($g = .32$) and no significant effect for metacognitive learning outcomes. Additionally, there was no evidence of publication bias. Further meta-regression models did not reveal evidence of moderating personal, environmental, or confounding factors highlighted the benefits of interactive simulations and online platforms in engaging students and improving learning outcomes in mathematics.

The emergence of artificial intelligence (AI) and natural language processing (NLP) technologies has paved the way for novel educational approaches, enabling interactive and personalized learning experiences (Bhutoria, 2022). The fusion of Artificial Intelligence (AI) with education signals a groundbreaking shift in teaching and learning, characterized by tailored educational journeys and streamlined operations. AI’s capacity to analyze vast datasets allows for personalized learning trajectories, adapting education to suit each student’s requirements and maximizing the likelihood of academic achievement. Personalization extends to content creation, where AI curates relevant and engaging materials, ensuring learner interest and facilitating knowledge retention (Miao et al., 2021; Das et al., 2023; George & Wooden, 2023). Automated assessments through AI not only streamline grading processes, allowing educators to focus on qualitative teaching aspects, but also promise greater objectivity in evaluations, potentially leading to more accurate assessments of student learning (Ghamrawi et al., 2023; Igbokwe, 2023; Kamalov et al., 2023).

Additionally, AI enhances accessibility for students with disabilities through tools like text-to-speech software, emphasizing its role in creating inclusive educational environments (Garg & Sharma, 2020; Toyokawa et al., 2023). Moreover, AI automates administrative tasks, boosting efficiency and allowing educators to dedicate more time to strategic teaching efforts and student engagement (George & Wooden, 2023; Igbokwe, 2023; Parycek et al., 2023). E-learning emerges as a vital instrument for continuous education and professional advancement, offering the potential to reshape the educational landscape. One of the AI tools that have been extensively used in fostering the education process, particularly teaching and learning process related to mathematics education is ChatGPT.

ChatGPT is a conversational artificial intelligence model developed by OpenAI that uses natural language processing to create human-like conversational dialogue responses in multiple languages and formats (Goar et al., 2023). Javaid et al. (2023) suggest that this technology can be applied in various fields, including chatbots, language translation, and text completion. The platform has attracted significant interest from both researchers and practitioners, leading to its widespread use across different sectors. However, the deployment of conversational AI models like ChatGPT brings about notable ethical and societal challenges, as highlighted by Mattas (2023). Aljanabi (2023) argues that despite these challenges, ChatGPT represents a significant breakthrough in AI language processing, with the potential to transform various industries and improve our quality of life. According to Mogavi et al. (2022), while ChatGPT excels at generating human-like conversations, it also presents specific issues that need to be addressed.

In recent years, language models such as ChatGPT have demonstrated remarkable capabilities in understanding and generating human-like text, making them valuable resources for educational purposes (Javaid et al., 2023). By integrating ChatGPT into the educational framework, students can engage in real-time discussions, ask questions, and receive immediate feedback, thereby fostering a more interactive and dynamic learning environment (Rasul et al., 2023). ChatGPT can enhance the learning experience and provide students with additional tools for exploring abstract algebra concepts (Adigüzel et al., 2023).

Using ChatGPT not only fosters deeper conceptual understanding but also promotes active engagement and collaboration among students, creating a more supportive and enriching learning environment (Baskara, 2023). Furthermore, ChatGPT can generate customized
practice problems and solutions, offering students opportunities for active learning and reinforcing their comprehension of abstract algebra concepts (Supriyadi & Kuncoro, 2023).

However, the use of ChatGPT in teaching abstract algebra is still underexplored due to the novelty of the technology, the complexity of the subject, and the challenges in integrating AI into advanced mathematics education effectively. Additionally, there are issues with curriculum development, assessment methodologies, and ensuring accuracy and bias-free responses from the AI. Previous studies on teaching abstract algebra using technology have focused on interactive simulations and online platforms to enhance visualization and understanding. This research differs by specifically investigating the use of AI-driven tools like ChatGPT for personalized, real-time assistance, thereby filling the gap in AI’s role in abstract algebra education. This research is novel as it explores the integration of advanced AI, specifically ChatGPT, in teaching complex subjects like abstract algebra, which hasn't been extensively studied. Its main contributions include evaluating ChatGPT’s effectiveness in enhancing comprehension, engagement, and performance in abstract algebra, providing new insights and methodologies for AI-assisted education.

The research intended to answer the following questions: How does the use of ChatGPT impact students' conceptual understanding in abstract algebra education? What effect does ChatGPT have on students' problem-solving skills in abstract algebra learning? In what ways does ChatGPT influence student engagement levels during abstract algebra instruction? What are the best practices associated with integrating ChatGPT into mathematical teaching methods? Finally, what challenges arise from the implementation of ChatGPT in abstract algebra education, and how can they be addressed effectively?

The study aimed to achieve several key objectives: to assess the effectiveness of ChatGPT in promoting conceptual understanding, problem-solving skills, and student engagement in abstract algebra education, and to identify best practices and challenges associated with the integration of ChatGPT in mathematical instruction. These objectives are intended to provide valuable insights for educators and researchers in the field. Through this investigation, the goal is to contribute to the growing body of literature on technology-enhanced learning in mathematics education and advance the understanding of innovative pedagogical approaches in abstract algebra instruction.

METHOD

The methodology involved direct interactions with ChatGPT, where students engaged with the AI in real-time to solve problems and clarify concepts in abstract algebra. Researchers analyzed these live interactions to assess ChatGPT’s impact on learning outcomes, rather than relying on pre-edited chat transcripts. Specifically, researcher engaged in conversations with the ChatGPT chatbot to delve into various aspects of group theory within abstract algebra. Researchers used ChatGPT to facilitate real-time problem-solving and concept clarification sessions in abstract algebra and group theory, collecting interaction data. This data was then analyzed for patterns in student understanding, engagement, and performance improvements, providing insights into the effectiveness of AI-assisted learning.

RESULTS AND DISCUSSION

Use of ChatGPT in impacting students’ conceptual understanding in abstract algebra education

The use of ChatGPT in abstract algebra education enhances students' conceptual understanding by providing interactive explanations and tailored feedback. This AI tool facilitates comprehension of complex concepts by offering step-by-step solutions and engaging students in dynamic problem-solving activities. Additionally, ChatGPT can adapt its responses to individual learning needs, ensuring that students grasp fundamental principles
effectively. By simulating a personalized tutoring experience, ChatGPT supports deeper learning and retention of abstract algebra concepts. Here is an example of a prompt which can fulfill this concept (see Figure 1).

Figure 1. Example of a ChatGPT prompt for enhancing conceptual understanding in abstract algebra

ChatGPT’s response

Definition of a Group

A group \(G \) is a set equipped with a binary operation \(* \) that satisfies the following four properties:

1. **Closure:** For every pair of elements \(a \) and \(b \) in \(G \), the result of the operation \(a * b \) is also in \(G \).

2. **Associativity:** For every \(a, b, \) and \(c \) in \(G \), \((a * b) * c = a * (b * c)\).

3. **Identity Element:** There exists an element \(e \) in \(G \) such that for every element \(a \) in \(G \), \(e * a = a * e = a \).

4. **Inverse Element:** For each element \(a \) in \(G \), there exists an element \(b \) in \(G \) such that \(a * b = b * a = e \), where \(e \) is the identity element.

Example: The Set of Integers under Addition

Let’s consider the set of integers \(\mathbb{Z} \) under the operation of addition \(+ \).

1. **Closure:** For any integers \(a \) and \(b \), their sum \(a + b \) is also an integer. For example, \(3 + 5 = 8 \) and \(-2 + 7 = 5 \), both results are integers.

2. **Associativity:** Addition of integers is associative. For any integers \(a, b, \) and \(c \), \((a + b) + c = a + (b + c)\). For instance, \((2 + 3) + 4 = 5 + 4 = 9\) and \(2 + (3 + 4) = 2 + 7 = 9\).

3. **Identity Element:** The identity element in the set of integers under addition is \(0 \), since \(0 + a = a + 0 = a \) for any integer \(a \). For example, \(0 + 6 = 6 \).

4. **Inverse Element:** For each integer \(a \), its inverse is \(-a\) because \(a + (-a) = (-a) + a = 0 \). For instance, the inverse of \(5 \) is \(-5\) because \(5 + (-5) = 0 \).

Figure 2. ChatGPT’s explanation of group properties in abstract algebra

This example illustrates how the properties of closure, associativity, identity, and inverses work together to define a group in abstract algebra and create a clear understanding of the concept (see Figure 2).

Effect of ChatGPT on students' problem-solving skills in abstract algebra learning

ChatGPT enhances students' problem-solving skills in abstract algebra by offering assistance with challenging problems related to permutation groups. For example, a student may struggle to understand how to calculate the order of a permutation group. ChatGPT can provide step-
by-step explanations and walk the student through the process, demonstrating how to determine the order by considering the cycle structure of permutations. By interacting with ChatGPT, students gain insight into problem-solving strategies and develop a deeper understanding of abstract algebra concepts. Here is an example of a prompt which fulfill this concept (see Figure 3).

Find the symmetric group on the set \(X = \{1, 2, 3\} \).

Figure 3. Example of a ChatGPT prompt for assisting with problem-solving in permutation groups

ChatGPT’s response

The symmetric group on a set \(X \) is the group of all permutations of \(X \). For the set \(X = \{1, 2, 3\} \), the symmetric group is denoted by \(S_3 \). This group consists of all possible bijections (permutations) of the set \(\{1, 2, 3\} \).

Let's list all the permutations of the set \(\{1, 2, 3\} \):

1. The identity permutation, which leaves every element in its original position:
 \[
 e = \begin{pmatrix}
 1 & 2 & 3 \\
 1 & 2 & 3
 \end{pmatrix}
 \]

2. The permutation that swaps 1 and 2:
 \[
 (12) = \begin{pmatrix}
 1 & 2 & 3 \\
 2 & 1 & 3
 \end{pmatrix}
 \]

3. The permutation that swaps 1 and 3:
 \[
 (13) = \begin{pmatrix}
 1 & 2 & 3 \\
 3 & 2 & 1
 \end{pmatrix}
 \]

4. The permutation that swaps 2 and 3:
 \[
 (23) = \begin{pmatrix}
 1 & 2 & 3 \\
 1 & 3 & 2
 \end{pmatrix}
 \]

5. The permutation that cycles 1 to 2, 2 to 3, and 3 to 1:
 \[
 (123) = \begin{pmatrix}
 1 & 2 & 3 \\
 2 & 3 & 1
 \end{pmatrix}
 \]

6. The permutation that cycles 1 to 3, 3 to 2, and 2 to 1:
 \[
 (132) = \begin{pmatrix}
 1 & 2 & 3 \\
 3 & 1 & 2
 \end{pmatrix}
 \]

Figure 4. Explanation of the symmetric group \(S_3 \) as a non-abelian group in abstract algebra

The symmetric group \(S_3 \) is a fundamental example of a non-abelian group, as the composition of permutations is generally not commutative (see Figure 4).

How ChatGPT Influences Student Engagement Levels During Abstract Algebra Instruction

ChatGPT enhances student engagement in abstract algebra instruction by providing immediate, personalized assistance with complex concepts, such as group theory, which helps
clarify misunderstandings. For instance, students can ask ChatGPT to explain the properties of symmetric groups like S_3 in different ways until they understand. It also offers step-by-step solutions to problems, such as finding permutation products, making abstract concepts more accessible. Additionally, ChatGPT can generate practice problems and provide feedback, promoting active learning. Lastly, it fosters curiosity by offering deeper insights and additional resources on topics students find challenging. Here is an example of a prompt which clarify the problem (see Figure 5 and Figure 6).

"Can you explain the properties of the symmetric group S_3 and show me how to find the product of two permutations in S_3?"

Figure 5. Example of a ChatGPT prompt for clarifying problems related to permutation products

ChatGPT’s response

Sure! The symmetric group S_3 is the group of all permutations of the set $\{1, 2, 3\}$. It has 6 elements, representing all the possible ways to rearrange the three elements:

1. The identity permutation e: $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
2. The permutation that swaps 1 and 2: (12): $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
3. The permutation that swaps 1 and 3: (13): $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
4. The permutation that swaps 2 and 3: (23): $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
5. The permutation that cycles 1 to 2, 2 to 3, and 3 to 1: (123): $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$
6. The permutation that cycles 1 to 3, 3 to 2, and 2 to 1: (132): $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

Finding the Product of Two Permutations

To find the product of two permutations, apply the right permutation first, then the left permutation. For example, let’s find the product of (12) and (23):

1. Write the permutations in cycle notation:

 $(12) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad (23) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

2. Apply (23) first:

 $1 \mapsto 1, \quad 2 \mapsto 3, \quad 3 \mapsto 2$

3. Then apply (12) to the result:

 $1 \mapsto 2, \quad 2 \mapsto 3 \mapsto 3, \quad 3 \mapsto 2 \mapsto 1$

4. Combine the results to get the final permutation:

 $(12)(23) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123)$

So, the product $(12)(23)$ is (123).

Figure 6. ChatGPT’s response demonstrating varied explanations and tailored feedback
Best practices associated with integrating ChatGPT into mathematical teaching methods

Interactive problem solving

This involves engaging students in active exploration and solution of mathematical problems with ChatGPT’s assistance, fostering deeper understanding and proficiency in abstract algebra concepts. ChatGPT can generate practice problems related to group theory concepts and provide step-by-step solutions, enabling students to practice and reinforce their learning. For example, students can interact with ChatGPT to solve a practice problem involving the calculation of a group operation, such as addition or multiplication modulo a given integer. Here is an example of a prompt with its response (see Figure 7).

![Figure 7. Example of a ChatGPT prompt and response for practicing group operations such as addition or multiplication modulo a given integer](image-url)

```
**You**
Can you generate a practice problem involving group operations for me to solve?

**ChatGPT**
Certainly! Here’s a practice problem involving group operations:

Consider the set \( \mathbb{Z}_7 \), which represents the integers modulo 7. The group operation in \( \mathbb{Z}_7 \) is addition modulo 7.

Practice Problem:
Calculate the result of the group operation \((3 + 5) \mod 7\) in \( \mathbb{Z}_7 \).

Once you've calculated the result, let me know your answer, and I'll provide feedback on whether it's correct!
```

Personalized learning

This involves providing customized explanations based on individual student needs, such as explaining group theory in multiple ways until comprehension is achieved. Here is an example of a prompt and its associated response on the problem (see Figure 8).

![Figure 8. Example of a ChatGPT prompt for personalized learning in group theory](image-url)

```
I'm having trouble understanding the concept of group operations. Can you provide a simple explanation?
```

Additionally, ChatGPT’s ability to adapt explanations and provide tailored feedback ensures that students can grasp complex concepts at their own pace, enhancing their overall learning experience (see Figure 9).
Sure! In abstract algebra, a group is a set equipped with a binary operation that satisfies four key properties: closure, associativity, the identity element, and the inverse element. Here's a simple explanation of each:

1. **Closure**: If you take any two elements in the group and apply the group operation to them, the result is also an element in the group. For example, in the set of integers with addition, the sum of any two integers is also an integer.

2. **Associativity**: The way in which you group elements when applying the operation does not change the result. For any elements a, b, and c in the group, $(a \circ b) \circ c = a \circ (b \circ c)$. For instance, with addition of integers, $(1 + 2) + 3 = 1 + (2 + 3)$.

3. **Identity Element**: There is an element in the group that, when combined with any element using the group operation, leaves the other element unchanged. For addition of integers, the identity element is 0 because $a + 0 = a$ for any integer a.

4. **Inverse Element**: For each element in the group, there is another element in the group such that when the operation is applied to both, you get the identity element. For integers under addition, the inverse of a is $-a$ because $a + (-a) = 0$.

Figure 9. ChatGPT’s adaptive response providing tailored explanations and feedback

Real-Time Interaction

Real-time interaction involves immediate engagement between students and ChatGPT, enabling instant responses to queries. By integrating ChatGPT into virtual classrooms or online platforms, students can ask questions about group theory concepts, and ChatGPT can provide immediate explanations and examples. For example, a student might ask, “What is the identity element in a group?” Here is an example of a prompt and its response. Here is an example of a prompt and its response on ChatGPT (see Figure 10).

In abstract algebra, a **group** is a set G equipped with a binary operation \cdot (often called multiplication, though the operation need not be multiplication in the traditional sense) that satisfies the following four properties:

1. **Closure**: For all elements a and b in G, the result of the operation $a \cdot b$ is also in G. In other words, G is closed under the operation \cdot.

2. **Associativity**: For all elements a, b, and c in G, the equation $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ holds. This means the way in which the elements are grouped does not affect the result of the operation.

3. **Identity Element**: There exists an element e in G (called the identity element) such that for every element a in G, the equation $e \cdot a = a = e \cdot a$ holds. The identity element leaves other elements unchanged when combined with them.

4. **Inverse Element**: For each element a in G, there exists an element b in G (called the inverse of a, often denoted as a^{-1}) such that $a \cdot b = b \cdot a = e$, where e is the identity element. This means each element has an inverse that, when combined with it, results in the identity element.

Figure 10. Example of a ChatGPT prompt and response for real-time interaction in group theory
Feedback and Assessment

Feedback and assessment mechanisms are essential elements of successful learning experiences, and ChatGPT serves as a vital tool in facilitating this process. Through offering immediate feedback on students' responses to practice problems, quizzes, or assessments, ChatGPT enables continuous monitoring of student progress and comprehension in real time. For example, students can undertake a quiz on group theory concepts, and ChatGPT can promptly analyse their answers, providing instant feedback on the accuracy of their solutions. In addition to indicating correct responses, ChatGPT can provide detailed explanations for incorrect answers, helping students identify areas of misunderstanding and reinforcing key concepts. Furthermore, ChatGPT's feedback capabilities extend beyond simple correctness assessment; it can offer personalized suggestions for improvement, recommend additional study resources, or tailor future learning activities to address specific learning gaps identified through assessment results. Figure 11 shows how ChatGPT shows feedback and assessment.

Figure 11. Example of ChatGPT providing feedback and assessment for group theory concepts

Challenges arising from the implementation of ChatGPT in abstract algebra education, and how can they be addressed effectively.

Implementing ChatGPT in abstract algebra education introduces challenges that need effective solutions. One such challenge is the risk of over-reliance on AI assistance, potentially hindering the development of students' independent problem-solving skills. To address this, educators should design activities that encourage students to utilize ChatGPT as a tool for understanding and verifying their solutions rather than relying solely on it for answers. Additionally, ensuring that students receive guidance on when and how to use ChatGPT appropriately can help mitigate this issue. Another challenge lies in the need to ensure that AI-generated explanations are always accurate and pedagogically sound. To tackle this, educators should provide training and guidelines for ChatGPT usage, emphasizing the importance of critically evaluating the information provided and seeking clarification when needed. Additionally, incorporating human oversight and feedback mechanisms can help improve the quality and reliability of AI-generated explanations over time. By proactively addressing these challenges, educators can maximize the benefits of integrating ChatGPT into abstract algebra education while minimizing potential drawbacks.

Discussion

Using ChatGPT in abstract algebra education significantly impacts students' conceptual understanding by offering interactive explanations and tailored feedback (Ilieva et al., 2023; Engelbrecht & Borba, 2023; Téllez et al., 2024). This AI tool facilitates comprehension of intricate concepts through step-by-step solutions and dynamic problem-solving activities (Javaid et al., 2023; Karakose & Tülübaş, 2023; Polverini & Gregorcic, 2023; Kılınç, 2023), adapting its responses to individual learning needs for effective grasp of fundamental principles (Elbanna & Armstrong, 2023; Rasul et al., 2023, Niyozov et al., 2023). By simulating personalized tutoring experiences, ChatGPT supports deeper learning and retention of abstract algebra concepts (Patero, 2023; Wardat et al., 2023; Zhang & Shao, 2024).
However, challenges arise in ensuring that students do not overly rely on AI assistance, risking the inhibition of independent problem-solving skills (Yan et al., 2024; Alasgarova & Rzayev, 2024; Famaye et al., 2024). Effective strategies involve guiding students to use ChatGPT as a supplementary tool rather than a sole solution provider, along with providing training and guidelines for its appropriate usage. Additionally, maintaining accuracy and pedagogical soundness of AI-generated explanations necessitates human oversight and feedback mechanisms, ensuring continuous improvement of ChatGPT’s quality and reliability over time.

By proactively implementing these measures, educators can harness the benefits of ChatGPT while mitigating potential drawbacks, thereby maximizing its positive impact on abstract algebra education. This balanced approach allows for the enhancement of conceptual understanding and problem-solving abilities, fostering a deeper and more independent engagement with abstract algebra concepts. Thus, while ChatGPT represents a significant advancement in educational technology, its integration into the curriculum should be carefully managed to support and enhance traditional learning methods effectively.

CONCLUSION

In conclusion, the integration of ChatGPT into the teaching and learning of abstract algebra concepts presents a hopeful pathway for innovation and enhancement in mathematics education. Through its versatile capabilities, ChatGPT has demonstrated its potential to revolutionize various aspects of abstract algebra instruction, including conceptual exploration, personalized learning, collaborative problem-solving, and feedback and assessment. By engaging with ChatGPT, students have the opportunity to delve deeply into abstract algebra concepts, interact dynamically with the material, and receive personalized support and feedback tailored to their individual needs and preferences. Furthermore, ChatGPT facilitates collaborative learning experiences, enabling students to engage in peer-to-peer interactions, share insights, and build a sense of community within virtual learning environments. The interactive nature of ChatGPT fosters active engagement, critical thinking, and knowledge sharing among students, promoting deeper understanding and mastery of abstract algebra concepts. Moreover, ChatGPT’s feedback and assessment capabilities provide students with immediate and targeted feedback on their learning progress, enabling them to identify areas of strength and weakness and make informed adjustments to their learning strategies. However, limitations include potential over-reliance on AI assistance, which may hinder the development of independent problem-solving skills, and the challenge of ensuring that AI-generated explanations are always accurate and pedagogically sound. Overall, the integration of ChatGPT into abstract algebra education holds immense potential to enhance learning outcomes, foster a culture of inquiry and discovery, and empower students to become confident and proficient mathematicians in the digital age. This research suggests that ChatGPT can enhance understanding and engagement in abstract algebra, offering a valuable tool for educators. Future recommendations include integrating ChatGPT with traditional teaching methods, conducting further studies to refine AI interactions, and ensuring adequate training for both students and teachers.

ACKNOWLEDGMENTS

I extend my heartfelt thanks to my mentors for their invaluable guidance and support throughout this research journey.

DECLARATIONS

Author Contribution: Fadhili Mustafa Mrope: Conceptualization, Writing - Original Draft, Editing and Visualization, Review & Editing, Formal analysis, and Methodology.
REFERENCES

Copyright © 2024; Author(s): 2339-224X (print) | 2579-3209 (online)