The effect of self-regulated learning and learning interest on mathematics learning outcomes

Authors

  • Tri Astuti Arigiyati Universitas Sarjanawiyata Tamansiswa, Indonesia
  • Betty Kusumaningrum Universitas Sarjanawiyata Tamansiswa, Indonesia
  • Irma Leny Maysaroh Universitas Sarjanawiyata Tamansiswa, Indonesia
  • K. S. Kuncoro Universitas Pendidikan Indonesia, Indonesia
  • Samsul Pahmi Nusa Putra University, Indonesia
  • Bahadır Özsüt Cukurova University, Turkey

DOI:

https://doi.org/10.30738/union.v11i2.15025

Keywords:

Learning interest, Mathematics learning outcomes, Self-regulated learning

Abstract

Learning outcomes are one of the important aspects in the learning process because it is used as a determining factor for the success of a learning process. The factors that influence student learning outcomes are divided into two, namely internal factors (learning interests, talents, motivation, self-regulation, etc.) and external factors (school environment, family environment, etc.). Self-regulation and learning interest were the focus of discussion in this research. This study aims to determine the positive and significant influence between independence and interest in learning on mathematics learning outcomes for class VIII students of SMP Negeri 24 Muaro Jambi. This type of research is associative quantitative research. The results showed that partially independence had a positive but not significant effect on mathematics learning outcomes with tcount = 1,323 and correlation coefficient 0,202, while interest in learning had a positive and significant effect mathematics learning outcomes with tcount = 4,193 and correlation coefficient 0,548. Simultaneously, independence and interest in learning have a positive and significant effect on mathematics learning outcomes for class VIII students of SMP Negeri 24 Muaro Jambi as shown by the Fcount = 41,196, with an effect of 66,8% and 33,2% influenced by other variables.

References

Ainley, M. (2006). Connecting with learning: Motivation, affect and cognition in interest processes. Educational Psychology Review, 18(4), 391–405. https://doi.org/10.1007/s10648-006-9033-0 DOI: https://doi.org/10.1007/s10648-006-9033-0

Azmidar, A., Darhim, D., & Dahlan, J. A. (2017). Enhancing Students’ Interest through Mathematics Learning. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012072 DOI: https://doi.org/10.1088/1742-6596/895/1/012072

Bartolucci, F., & Scaccia, L. (2005). The use of mixtures for dealing with non-normal regression errors. Computational Statistics and Data Analysis, 48(4), 821–834. https://doi.org/10.1016/j.csda.2004.04.005 DOI: https://doi.org/10.1016/j.csda.2004.04.005

Biggs, J. (1999). What the student does: Teaching for enhanced learning. International Journal of Phytoremediation, 21(1), 57–75. https://doi.org/10.1080/0729436990180105 DOI: https://doi.org/10.1080/0729436990180105

Brancato, G., Macchia, S., Murgia, M., Signore, M., Blanke, K., & Lima, P. (2006). Handbook of Recommended Practices for Questionnaire Development and Testing in the European Statistical System. Retrieved from https://unstats.un.org/unsd/EconStatKB/KnowledgebaseArticle10364.aspx

Cazan, A.-M. (2013). Teaching Self Regulated Learning Strategies for Psychology Students. Procedia - Social and Behavioral Sciences, 78, 743–747. https://doi.org/10.1016/j.sbspro.2013.04.387 DOI: https://doi.org/10.1016/j.sbspro.2013.04.387

Cheng, E. C. K. (2011). The role of self-regulated learning in enhancing learning performance. The International Journal of Research and Review, 6(1), 1–17. Retrieved from https://tijrr.webs.com/articles

Cleary, T. J., & Kitsantas, A. (2017). Motivation and self-regulated learning influences on middle school mathematics achievement. School Psychology Review, 46(1), 88–107. https://psycnet.apa.org/doi/10.17105/SPR46-1.88-107 DOI: https://doi.org/10.1080/02796015.2017.12087607

Corso, M. J., Bundick, M. J., Quaglia, R. J., & Haywood, D. E. (2013). Where student, teacher, and content meet: Student engagement in the secondary school classroom. American Secondary Education, 50–61. Retrieved from https://www.jstor.org/stable/43694167

Divya, K. H., & Devi, V. R. (2014). A STUDY ON PREDICTORS OF GDP : EARLY SIGNALS. Procedia Economics and Finance, 11(14), 375–382. https://doi.org/10.1016/S2212-5671(14)00205-6 DOI: https://doi.org/10.1016/S2212-5671(14)00205-6

Donaldson, T. S. (1968). Robustness of the F-Test to Errors of Both Kinds and the Correlation Between the Numerator and Denominator of the F-Ratio. Journal of the American Statistical Association, 63(322), 660–676. https://doi.org/10.1080/01621459.1968.11009285 DOI: https://doi.org/10.1080/01621459.1968.11009285

Eberly, L. E. (2007). Multiple linear regression. In Topics in Biostatistics (pp. 165–187). https://doi.org/10.1007/978-1-59745-530-5_9 DOI: https://doi.org/10.1007/978-1-59745-530-5_9

Edriani, D., & Gumanti, D. (2021). Pengaruh Minat dan Kemandirian Belajar terhadap Hasil Belajar Siswa Jurusan Akuntansi di SMK Negeri 1 Painan [The Influence of Learning Interest and Independence on Student Learning Outcomes Majoring in Accounting at SMK Negeri 1 Painan]. Edukatif : Jurnal Ilmu Pendidikan, 3(6), 4506–4517. https://doi.org/10.31004/edukatif.v3i6.1479 DOI: https://doi.org/10.31004/edukatif.v3i6.1479

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3, 1–8. https://doi.org/10.1186/s40594-016-0036-1 DOI: https://doi.org/10.1186/s40594-016-0036-1

Fernandez-Macho, J. (2018). Time-localized wavelet multiple regression and correlation. Physica A: Statistical Mechanics and Its Applications, 492, 1226–1238. https://doi.org/10.1016/j.physa.2017.11.050 DOI: https://doi.org/10.1016/j.physa.2017.11.050

Froiland, J. M., & Worrell, F. C. (2016). Intrinsic motivation, learning goals, engagement, and achievement in a diverse high school. Psychology in the Schools, 53(3), 321–336. https://psycnet.apa.org/doi/10.1002/pits.21901 DOI: https://doi.org/10.1002/pits.21901

Guswara, A. M., & Purwanto, W. (2021). The Contribution of Google Classroom Application and Motivation to The Learning Outcomes of Web Programming. Journal of Education Technology, 4(4), 424–432. https://doi.org/10.23887/jet.v4i4.29896 DOI: https://doi.org/10.23887/jet.v4i4.29896

Harris, K. R., Friedlander, B. D., Saddler, B., Frizzelle, R., & Graham, S. (2005). Self-monitoring of attention versus self-monitoring of academic performance: Effects among students with ADHD in the general education classroom. Journal of Special Education, 39(3), 145–156. https://doi.org/10.1177/00224669050390030201 DOI: https://doi.org/10.1177/00224669050390030201

Islam, T. U. (2011). Normality Testing- A New Direction. International Journal of Business and Social Science, 2(3), 115–118. Retrieved from https://www.researchgate.net/publication/215702241_Normality_Testing-_A_New_Direction

Järvelä, S., & Järvenoja, H. (2011). Socially constructed self-regulated learning and motivation regulation in collaborative learning groups. Teachers College Record, 113(2), 350–374. https://doi.org/10.1177/016146811111300205 DOI: https://doi.org/10.1177/016146811111300205

Keller, M. M., Neumann, K., & Fischer, H. E. (2017). The impact of physics teachers’ pedagogical content knowledge and motivation on students’ achievement and interest. Journal of Research in Science Teaching, 54(5), 586–614. https://doi.org/10.1002/tea.21378 DOI: https://doi.org/10.1002/tea.21378

Kim, T. K. (2011). T test as a parametric statistic. International Journal of Business and Social Science, 2(3). https://doi.org/10.4097/kjae.2015.68.6.540 DOI: https://doi.org/10.4097/kjae.2015.68.6.540

Kostons, D., van Gog, T., & Paas, F. (2012). Training self-assessment and task-selection skills: A cognitive approach to improving self-regulated learning. Learning and Instruction, 22(2), 121–132. https://doi.org/10.1016/j.learninstruc.2011.08.004 DOI: https://doi.org/10.1016/j.learninstruc.2011.08.004

Lin, H., Hong, Z.-R., & Chen, Y.-C. (2013). Exploring the development of college students’ situational interest in learning science. International Journal of Science Education, 35(13), 2152–2173. http://dx.doi.org/10.1080/09500693.2013.818261 DOI: https://doi.org/10.1080/09500693.2013.818261

Marrelec, G., Krainik, A., Duffau, H., Doyon, J., & Benali, H. (2006). Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage, 32(1), 228–237. https://doi.org/10.1016/j.neuroimage.2005.12.057 DOI: https://doi.org/10.1016/j.neuroimage.2005.12.057

Meng, X. (2013). Scalable Simple Random Sampling and Stratified Sampling. International Conference on Machine Learning, 28, 531–539. Retrieved from https://proceedings.mlr.press/v28/meng13a.html

Motola, I., Devine, L. A., Chung, H. S., Sullivan, J. E., & Issenberg, S. B. (2013). Simulation in healthcare education: a best evidence practical guide. AMEE Guide No. 82. Medical Teacher, 35(10), e1511–e1530. https://doi.org/10.3109/0142159x.2013.818632 DOI: https://doi.org/10.3109/0142159X.2013.818632

Murayama, K., Pekrun, R., Lichtenfeld, S., & Vom Hofe, R. (2013). Predicting long‐term growth in students’ mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84(4), 1475–1490. https://psycnet.apa.org/doi/10.1111/cdev.12036 DOI: https://doi.org/10.1111/cdev.12036

Nevin, R., Blecha, L., Vega, J., Murari, A., Nevin, R., & Blecha, L. (2017). Multicollinearity and Regression Analysis Multicollinearity and Regression Analysis. Journal of Physics: Conference Series, 012009. https://doi.org/10.1088/1742-6596/949/1/012009 DOI: https://doi.org/10.1088/1742-6596/949/1/012009

Paolini, A. (2015). Enhancing Teaching Effectiveness and Student Learning Outcomes. Journal of Effective Teaching, 15(1), 20–33. Retrieved from https://eric.ed.gov/?id=EJ1060429

Pekrun, R. (2019). The murky distinction between curiosity and interest: State of the art and future prospects. Educational Psychology Review, 31(4), 905–914. https://doi.org/10.1007/s10648-019-09512-1 DOI: https://doi.org/10.1007/s10648-019-09512-1

Schunk, D. H. (2005). Self-regulated learning: The educational legacy of Paul R. Pintrich. Educational Psychologist, 40(2), 85–94. https://doi.org/10.1207/s15326985ep4002_3 DOI: https://doi.org/10.1207/s15326985ep4002_3

Suhendri, H. (2011). Pengaruh Kecerdasan Matematis–Logis dan Kemandirian Belajar terhadap Hasil Belajar Matematika [The Effect of Mathematical-Logical Intelligence and Independent Learning on Mathematics Learning Outcomes]. Formatif: Jurnal Ilmiah Pendidikan MIPA, 1(1), 29–39. https://doi.org/10.30998/formatif.v1i1.61 DOI: https://doi.org/10.30998/formatif.v1i1.61

Sukamolson, S. (2007). Fundamentals of quantitative research. Language Institute Chulalongkorn University, 1(3), 1–20.

Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students’ success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41–53. https://psycnet.apa.org/doi/10.1016/j.iheduc.2017.09.003 DOI: https://doi.org/10.1016/j.iheduc.2017.09.003

Taylor, G., Jungert, T., Mageau, G. A., Schattke, K., Dedic, H., Rosenfield, S., & Koestner, R. (2014). A self-determination theory approach to predicting school achievement over time: The unique role of intrinsic motivation. Contemporary Educational Psychology, 39(4), 342–358. https://psycnet.apa.org/doi/10.1016/j.cedpsych.2014.08.002 DOI: https://doi.org/10.1016/j.cedpsych.2014.08.002

Underwood, J., & Banyard, P. (2011). Self-Regulated Learning in Technology Enhanced Learning Environments in Europe. In Self-Regulated Learning in Technology Enhanced Learning Environments. https://doi.org/10.1007/978-94-6091-654-0_10 DOI: https://doi.org/10.1007/978-94-6091-654-0_10

Usatnoby, M. C., Amsikan, S., & Mamoh, O. (2020). Pengaruh Minat Belajar dan Motivasi Belajar Terhadap Hasil Belajar Matematika Siswa di kelas VIII SMP Negeri Nunufafi Tahun Ajaran 2019/2020 [The Effect of Interest in Learning and Learning Motivation on Students' Mathematics Learning Outcomes in Class VIII of Nunufafi Public Middle School for the 2019/2020 Academic Year]. MATH-EDU: Jurnal Ilmu Pendidikan Matematika, 5(2), 59–63. https://doi.org/10.32938/jipm.5.2.2020.59-63 DOI: https://doi.org/10.32938/jipm.5.2.2020.59-63

Wilder, S. (2014). Effects of parental involvement on academic achievement: a meta-synthesis. Educational Review, 66(3), 377–397. https://doi.org/10.1080/00131911.2013.780009 DOI: https://doi.org/10.1080/00131911.2013.780009

Yumhi, Y., Martoyo, D., Tunnufus, Z., & Timotius, E. (2021). Determinant Factors of the Performance of Higher Institutions in Indonesia. The Journal of Asian Finance, Economics, and Business, 8(2), 667–673. https://doi.org/10.13106/jafeb.2021.vol8.no2.0667

Zhang, D. (2016). A Coefficient of Determination for Generalized Linear Models. 1–19. http://dx.doi.org/10.1080/00031305.2016.1256839 DOI: https://doi.org/10.1080/00031305.2016.1256839

Zheng, B., & Zhang, Y. (2020). Self-regulated learning: The effect on medical student learning outcomes in a flipped classroom environment. BMC Medical Education, 20(1), 1–7. https://doi.org/10.1186/s12909-020-02023-6 DOI: https://doi.org/10.1186/s12909-020-02023-6

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal, 45(1), 166–183. https://doi.org/10.3102/0002831207312909 DOI: https://doi.org/10.3102/0002831207312909

Zimmerman, B. J., & Schunk, D. H. (2013). Reflections on theories of self-regulated learning and academic achievement. In Self-regulated learning and academic achievement (pp. 282–301). Routledge. DOI: https://doi.org/10.4324/9781410601032

Zumbrunn, S. (2011). Encourage self regulated learning in the classroom. Journal Virginia Commonwealth University, 278–299. Retrieved from http://scholarscompass.vcu.edu/merc_pubs/18

Downloads

Published

2023-07-31

How to Cite

Arigiyati, T. A., Kusumaningrum, B., Maysaroh, I. L., Kuncoro, K. S., Pahmi, S., & Özsüt, B. (2023). The effect of self-regulated learning and learning interest on mathematics learning outcomes. Union: Jurnal Ilmiah Pendidikan Matematika, 11(2), 317–329. https://doi.org/10.30738/union.v11i2.15025

Issue

Section

Artikel

Citation Check